OLYMPIKA ADS



Pronunciamento Oficial da Sociedade Internacional de Nutrição Esportiva (ISSN)

Padrões nutricionais da atleta feminina

Pronunciamento Oficial da Sociedade Internacional de Nutrição Esportiva (ISSN): Padrões nutricionais da atleta feminina

OPEN ACCESS: Artigo disponível/Article available/Artículo disponible - ASSINANTE/SUBSCRIBER: Artigo para Assinante do periódico/Article for Journal Subscriber/Artículo para suscriptores de este periódico - PAY-PER-VIEW: Compre o artigo e leia/Buy the article and read/Compra el artículo y lee



Autores

  • Stacy T Sims Auckland University of Technology, SPRINZ, Auckland, New Zealand
  • Chad M Kerksick Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
  • Abbie E Smith-Ryan University of North Carolina Chapel Hill, Department of Exercise and Sport Science, Chapel Hill, NC, USA
  • Xanne A K Janse de Jonge University of Newcastle, Exercise and Sport Science, Newcastle, New South Wales, Australia
  • Katie R Hirsch University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, USA
  • Shawn M Arent University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, USA
  • Susan Joyce Hewlings Nutrasource, Guelph, Ontario, Canada
  • Susan M Kleiner High Performance Nutrition LLC Mercer, Island, WA, US
  • Erik Bustillo Erik Bustillo Consulting, Miami, FL, USA
  • Jaime L Tartar Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, US
  • Valerie G Starratt Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, US
  • Richard B Kreider Texas A & M University, Department of Kinesiology and Sport Management, College Station, TX, USA
  • Casey Greenwalt Florida State University, Institute of Sports Sciences and Medicine, Nutrition and Integrative Physiology, Tallahassee, FL, USA
  • Liliana I Rentería Florida State University, Institute of Sports Sciences and Medicine, Nutrition and Integrative Physiology, Tallahassee, FL, USA
  • Michael J Ormsbee Florida State University, Institute of Sports Sciences and Medicine, Nutrition and Integrative Physiology, Tallahassee, FL, USA
  • Trisha A VanDusseldorp Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
  • Bill I Campbell University of South Florida, Exercise Science Program, Performance & Physique Enhancement Laboratory, Tampa, FL, USA
  • Douglas S Kalman Nova Southeastern University, Dr. Kiran C Patel College of Osteopathic Medicine, Department of Nutrition, Davie, FL, USA
  • Jose Antonio Nova Southeastern University, Dr. Kiran C Patel College of Healthcare Sciences, Department of Health and Human Performance, Davie, FL, USA

Palavras-chave:

Atleta Feminina, Ciclo Menstrual, Contraceptivo Hormonal, Menopausa, Nutrição, Exercício

Resumo

Com base em uma revisão abrangente e análise crítica da literatura sobre as preocupações nutricionais de atletas femininas, conduzida por especialistas na área e membros selecionados da Sociedade Internacional de Nutrição Esportiva (ISSN), as seguintes conclusões representam o Pronunciamento Oficial da Sociedade: 1. As atletas femininas têm perfis hormonais únicos e imprevisíveis, que influenciam a sua fisiologia e necessidades nutricionais ao longo da vida. Para entender como as perturbações nesses hormônios afetam o indivíduo, recomendamos que atletas femininas em idade reprodutiva monitorem seu estado hormonal (natural, impulsionado por hormônios) em relação ao treinamento e à recuperação para determinar seus padrões e necessidades individuais, e atletas na peri e pós-menopausa devem monitorar métricas de treinamento e recuperação para determinar os padrões únicos dos indivíduos. 2. A consideração nutricional primária para todos os atletas, e em particular para as atletas do sexo feminino, deve ser alcançar uma ingestão energética adequada para satisfazer as suas necessidades energéticas e alcançar uma disponibilidade energética ótima (EA); com foco no horário das refeições em relação ao exercício para melhorar as adaptações ao treinamento, o desempenho e a saúde do atleta. 3. São evidentes as diferenças significativas entre os sexos e influências hormonais sexuais no metabolismo dos hidratos de carbono e dos lipídios, por isso recomendamos primeiro garantir que as atletas satisfaçam as suas necessidades de hidratos de carbono em todas as fases do ciclo menstrual. Em segundo lugar, adaptar a ingestão de hidratos de carbono ao estado hormonal, com ênfase numa maior ingestão e disponibilidade de hidratos de carbono durante as semanas de pílula ativa das utilizadoras de contraceptivos orais e durante a fase lútea do ciclo menstrual, onde há um maior efeito da supressão dos hormônios sexuais na produção de gluconogênese durante o exercício. 4. Com base na limitada pesquisa disponível, recomendamos que os contraceptivos orais, pré-menopáusicos e eumenorreicos que utilizam atletas do sexo feminino devem ter como objetivo consumir uma fonte de proteína de alta qualidade o mais próximo possível do início e/ou após a conclusão do exercício para reduzir perdas oxidativas de aminoácidos induzidas pelo exercício e iniciem a remodelação e reparo da proteína muscular na dose de 0,32–0,38 g·kg−1. Para mulheres eumenorreicas, a ingestão durante a fase lútea deve ter como objetivo o limite superior da faixa devido às ações catabólicas da progesterona e à maior necessidade de aminoácidos. 5. Perto do início e/ou após a conclusão do exercício, os atletas na peri e pós-menopausa devem procurar um bolus de fontes de proteína intacta com alto teor de EAA (~10 g) ou suplementos para superar a resistência anabólica. 6. A ingestão diária de proteínas deve estar dentro dos limites médios a superiores das atuais diretrizes de nutrição esportiva (1,4–2,2 g·kg−1·dia−1) para mulheres em todas as fases da função menstrual (pré-, peri-, pós-menopausa e usuárias de anticoncepcionais) com doses de proteína distribuídas uniformemente, a cada 3-4 horas, ao longo do dia. Atletas eumenorreicas na fase lútea e atletas peri/pós-menopausa, independentemente do esporte, devem buscar o limite superior da faixa. 7. Os hormônios sexuais femininos afetam a dinâmica dos fluidos e o manejo dos eletrólitos. Uma maior predisposição à hiponatremia ocorre em períodos de progesterona elevada e em mulheres na menopausa, que são mais lentas na excreção de água. Além disso, as mulheres têm menos líquidos absolutos e relativos disponíveis para perder através da transpiração do que os homens, tornando as consequências fisiológicas da perda de líquidos mais graves, particularmente na fase lútea. 8. Faltam evidências de suplementação específica para o sexo devido à escassez de pesquisas específicas para mulheres e a quaisquer efeitos diferenciais nas mulheres. Cafeína, ferro e creatina têm mais evidências para uso em mulheres. Tanto o ferro quanto a creatina são altamente eficazes para atletas do sexo feminino. A suplementação de creatina de 3 a 5 g por dia é recomendada para o suporte mecanicista da suplementação de creatina no que diz respeito à cinética da proteína muscular, fatores de crescimento, células satélites, fatores de transcrição miogênica, regulação de glicogênio e cálcio, estresse oxidativo e inflamação. Mulheres na pós-menopausa se beneficiam da saúde óssea, da saúde mental e do tamanho e função do músculo esquelético ao consumir doses mais altas de creatina (0,3 g·kg−1·d−1). 9. Para fomentar e promover investigações de alta qualidade envolvendo atletas do sexo feminino, os pesquisadores devem ser primeiro encorajados a deixar de excluir as mulheres, a menos que os objetivos primários sejam diretamente influenciados por mecanismos específicos do sexo. Em todos os cenários investigativos, pesquisadores de todo o mundo são incentivados a investigar e relatar informações mais detalhadas sobre o estado hormonal da atleta, incluindo o estado menstrual (dias desde a menstruação, duração da menstruação, duração do ciclo, etc.) e/ou detalhes contraceptivos hormonais e/ou estado de menopausa.

ARK
— Identificador persistente da Edição 2024 OLYMPIKA MAGAZINE - VOLUME 2 ONLINE - Nº. 002: https://n2t.net/ark:/40019/oly.v2i2
— Identificador persistente deste artigo: https://n2t.net/ark:/40019/oly.v2i.13.g22


Referências

(1) Sims ST, Heather AK. Myths and methodologies: reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol. 2018 Oct;103(10):1309–429.

(2) Elliott-Sale KJ, Minahan CL, de Jonge X, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021 May;51(5):843–861.

(3) Brookshire B Science news [Internet] 2016 May 25.

(4) Project CD. The coronary drug project. Initial findings leading to modifications of its research protocol. JAMA. 1970 Nov 16;214(7):1303–1313.

(5) Gorder DD, Dolecek TA, Coleman GG, et al. Dietary intake in the multiple risk factor intervention trial (MRFIT): nutrient and food group changes over 6 years. J Am Diet Assoc. 1986 Jun;86(6):744–751.

(6) Cowley ESO, Ross EZ, McNulty KL. “Invisible sportswomen”: the sex data gap in sport and exercise science research. Women Sport Phys Act J. 2022;29(2):146–151.

(7) Jacobi M. The question of rest for women during menstruation. New York: GP Putnam’s sons; 1877.

(8) Schaumberg MA, Jenkins DG, Janse de Jonge XAK, et al. Three-step method for menstrual and oral contraceptive cycle verification. J Sci Med Sport. 2017 Nov;20(11):965–969.

(9) Oosthuyse T, Strauss JA, Hackney AC. Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol. 2022 Nov 19.

(10) Bruinvels G, Burden RJ, McGregor AJ, et al. Sport, exercise and the menstrual cycle: where is the research? Br J Sports Med. 2017 Mar;51(6):487–488.

(11) Janse DEJX, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exercise. 2019 Dec;51(12):2610–2617.

(12) Wohlgemuth KJ, Arieta LR, Brewer GJ, et al. Sex differences and considerations for female specific nutritional strategies: a narrative review. J Int Soc Sports Nutr. 2021 Apr 1;18(1):27.

(13) Desbrow B, Burd NA, Tarnopolsky M, et al. Nutrition for special populations: young, female, and masters athletes. Int J Sport Nutr Exerc Metab. 2019 Mar 1;29(2):220–227.

(14) Miotto PM, McGlory C, Holloway TM, et al. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2018 Jun 1;314(6):R909–915.

(15) Silaidos C, Pilatus U, Grewal R, et al. Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biol Sex Differ. 2018 Jul 25;9(1):34.

(16) Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: implications for neuroprotection. J Bioenerg Biomembr. 2015 Apr;47(1–2):173–188.

(17) Cortright RN, Koves TR. Sex differences in substrate metabolism and energy homeostasis. Can J Appl Physiol. 2000 Aug;25(4):288–311.

(18) Montero D, Madsen K, Meinild-Lundby AK, et al. Sexual dimorphism of substrate utilization: differences in skeletal muscle mitochondrial volume density and function. Exp Physiol. 2018 Jun;103(6):851–859.

(19) Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ. 2015;6:14.

(20) Hevener AL, Zhou Z, Drew BG, et al. The role of skeletal muscle estrogen receptors in metabolic homeostasis and insulin sensitivity. Adv Exp Med Biol. 2017;1043:257–284.

(21) Hevener AL, Zhou Z, Moore TM, et al. The impact of ERalpha action on muscle metabolism and insulin sensitivity - Strong enough for a man, made for a woman. Mol Metab. 2018 Sep;15:20–34.

(22) Hevener AL, Ribas V, Moore TM, et al. The impact of skeletal muscle ERalpha on mitochondrial function and metabolic health. Endocrinology. 2020 Feb 1;161(2).

(23) Shi H, Seeley RJ, Clegg DJ. Sexual differences in the control of energy homeostasis. Front Neuroendocrinol. 2009 Aug;30(3):396–404.

(24) Roepstorff C, Steffensen CH, Madsen M, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E435–47.

(25) Ortona E, Pierdominici M, Rider V. Editorial: sex hormones and gender differences in immune responses. Front Immunol. 2019;10:1076.

(26) Gupta S, Nakabo S, Blanco LP, et al. Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16481–16491.

(27) Genolet O, Monaco AA, Dunkel I, et al. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol. 2021 Apr 16;22(1):110.

(28) Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016 Oct;16(10):626–638.

(29) Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010 Jan 1;40(1):41–58.

(30) Miller MS, Bedrin NG, Callahan DM, et al. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol. 1985 2013Oct 1;115(7):1004–1014.

(31) Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology. 2015 Jan;30(1):30–39.

(32) Landen S, Hiam D, Voisin S, et al. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J Physiol. 2021 Nov 11;601:419–434.

(33) Terink R, Ten Haaf D, Bongers CWG, et al. Changes in iron metabolism during prolonged repeated walking exercise in middle-aged men and women. Eur J Appl Physiol. 2018 Nov;118(11):2349–2357.

(34) Grubic Kezele T, Curko-Cofek B. Age-related changes and sex-related differences in brain iron metabolism. Nutrients. 2020 Aug 27;12(9).

(35) Badenhorst CE, Goto K, O’Brien WJ, et al. Iron status in athletic females, a shift in perspective on an old paradigm. J Sports Sci. 2021 Jul;39(14):1565–1575.

(36) Rushton DH, Dover R, Sainsbury AW, et al. Why should women have lower reference limits for haemoglobin and ferritin concentrations than men? BMJ. 2001 Jun 2;322(7298):1355–1357.

(37) Yang Q, Jian J, Katz S, et al. 17beta-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology. 2012 Jul;153(7):3170–3178.

(38) Sim M, Dawson B, Landers G, et al. Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. Int J Sport Nutr Exerc Metab. 2014 Apr;24(2):177–187.

(39) McKay AKA, Pyne DB, Burke LM, et al. Iron metabolism: interactions with energy and carbohydrate availability. Nutrients. 2020 Nov 30;12(12):3692.

(40) Barba-Moreno L, Alfaro-Magallanes VM, de Jonge X, et al. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur J Sport Sci. 2020 Dec;17:1–9.

(41) Baker FC, Siboza F, Fuller A. Temperature regulation in women: effects of the menstrual cycle. Temperature (Austin). 2020;7(3):226–262.

(42) Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012 Dec 1;590(23):5963–5973.

(43) Iyoho AE, Ng LJ, MacFadden L. Modeling of gender differences in thermoregulation. Mil Med. 2017 Mar;182(S1):295–303.

(44) Yanovich R, Ketko I, Charkoudian N. Sex differences in human thermoregulation: relevance for 2020 and beyond. Physiology. 2020 May 1;35(3):177–184.

(45) Wickham KA, McCarthy DG, Spriet LL, et al. Sex differences in the physiological responses to exercise-induced dehydration: consequences and mechanisms. J Appl Physiol. 1985 2021 Aug 1;131(2):504–510.

(46) Giersch GEW, Morrissey MC, Butler CR, et al. Sex difference in initial thermoregulatory response to dehydrated exercise in the heat. Physiol Rep. 2021 Jul;9(14):e14947.

(47) Sims ST, Rehrer NJ, Bell ML, et al. Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. J Appl Physiol. 1985 2007 Aug;103(2):534–541.

(48) Stachenfeld NS, Splenser AE, Calzone WL, et al. Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol. 1985 2001 Oct;91(4):1893–1901.

(49) Wenner MM, Stachenfeld NS. Blood pressure and water regulation: understanding sex hormone effects within and between men and women. J Physiol. 2012 Dec 1;590(23):5949–5961.

(50) Baker LB, Munce TA, Kenney WL. Sex differences in voluntary fluid intake by older adults during exercise. Med Sci Sports Exercise. 2005 May;37(5):789–796.

(51) Eijsvogels TM, Scholten RR, van Duijnhoven NT, et al. Sex difference in fluid balance responses during prolonged exercise. Scand J Med Sci Sports. 2013 Mar;23(2):198–206.

(52) Sims ST, Rehrer NJ, Bell ML, et al. Endogenous and exogenous female sex hormones and renal electrolyte handling: effects of an acute sodium load on plasma volume at rest. J Appl Physiol. 1985 2008 Jul;105(1):121–127.

(53) Stachenfeld NS. Sex hormone effects on body fluid regulation. Exerc Sport Sci Rev. 2008 Jul;36(3):152–159.

(54) Hazell TJ, Townsend LK, Hallworth JR, et al. Sex differences in the response of total PYY and GLP-1 to moderate-intensity continuous and sprint interval cycling exercise. Eur J Appl Physiol. 2017 Mar;117(3):431–440.

(55) Qian J, Morris CJ, Caputo R, et al. Sex differences in the circadian misalignment effects on energy regulation. Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23806–23812.

(56) Asarian L, Geary N. Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci. 1471 2006 Jul 29;361:1251–1263.

(57) Hagobian TA, Braun B. Physical activity and hormonal regulation of appetite: sex differences and weight control. Exerc Sport Sci Rev. 2010 Jan;38(1):25–30.

(58) Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol. 2013 Dec;305(11):R1215–67.

(59) Hirschberg AL. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012 Mar;71(3):248–256.

(60) Heikura IA, Uusitalo ALT, Stellingwerff T, et al. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018 Jul 1;28(4):403–411.

(61) Melin A, Tornberg AB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015 Oct;25(5):610–622.

(62) Fahrenholtz IL, Sjodin A, Benardot D, et al. Within-day energy deficiency and reproductive function in female endurance athletes. Scand J Med Sci Sports. 2018 Mar;28(3):1139–1146.

(63) Loucks AB. Energy availability, not body fatness, regulates reproductive function in women. Exerc Sport Sci Rev. 2003 Jul;31(3):144–148.

(64) Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003 Jan;88(1):297–311.

(65) Loucks AB, Verdun M. Slow restoration of LH pulsatility by refeeding in energetically disrupted women. Am J Physiol. 1998 Oct;275(4):R1218–26.

(66) Kim JH, Cho HT, Kim YJ. The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocr J. 2014;61(11):1055–1067.

(67) Frank A, Brown LM, Clegg DJ. The role of hypothalamic estrogen receptors in metabolic regulation. Front Neuroendocrinol. 2014 Oct;35(4):550–557.

(68) Ropero AB, Alonso-Magdalena P, Quesada I, et al. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids. 2008 Oct;73(9–10):874–879.

(69) Hevener AL, Clegg DJ, Mauvais-Jarvis F. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Mol Cell Endocrinol. 2015 Dec 15;418(3):306–321.

(70) Chen JQ, Brown TR, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim Biophys Acta. 2009 Jul;1793(7):1128–1143.

(71) Howe JCR WV, Seale JL, Seale JL. Energy expenditure by indirect calorimetry in premenopausal women: variation within one menstrual cycle. J Nutr Biochem. 1993;4(5):268–273.

(72) Zhang S, Osumi H, Uchizawa A, et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol Rep. 2020 Jan;8(2):e14353.

(73) Benton MJ, Hutchins AM, Dawes JJ. Effect of menstrual cycle on resting metabolism: a systematic review and meta-analysis. PLoS ONE. 2020;15(7):e0236025.

(74) Chapman AB, Zamudio S, Woodmansee W, et al. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Physiol. 1997 Nov;273(5):F777–82.

(75) Szmuilowicz ED, Adler GK, Williams JS, et al. Relationship between aldosterone and progesterone in the human menstrual cycle. J Clin Endocrinol Metab. 2006 Oct;91(10):3981–3987.

(76) Pechere-Bertschi A, Maillard M, Stalder H, et al. Renal segmental tubular response to salt during the normal menstrual cycle. Kidney Int. 2002 Feb;61(2):425–431.

(77) Olson BR, Forman MR, Lanza E, et al. Relation between sodium balance and menstrual cycle symptoms in normal women. Ann Intern Med. 1996 Oct 1;125(7):564–567.

(78) Landau RL, Lugibihl K. The effect of progesterone on amino acid metabolism. J Clin Endocrinol Metab. 1961 Nov;21:1355–1363.

(79) Draper CF, Duisters K, Weger B, et al. Menstrual cycle rhythmicity: metabolic patterns in healthy women. Sci Rep. 2018 Oct 1;8(1):14568.

(80) Faustmann G, Meinitzer A, Magnes C, et al. Progesterone-associated arginine decline at luteal phase of menstrual cycle and associations with related amino acids and nuclear factor kB activation. PLoS ONE. 2018;13(7):e0200489.

(81) Kriengsinyos W, Wykes LJ, Goonewardene LA, et al. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E489–96.

(82) Campbell SE, Febbraio MA. Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol Endocrinol Metab. 2002 May;282(5):E1139–46.

(83) Flannery CA, Choe GH, Cooke KM, et al. Insulin regulates glycogen synthesis in human endometrial glands through increased GYS2. J Clin Endocrinol Metab. 2018 Aug 1;103(8):2843–2850.

(84) Zhang H, Qi J, Wang Y, et al. Progesterone regulates glucose metabolism through glucose transporter 1 to promote endometrial receptivity. Front Physiol. 2020 ;11:543148.

(85) Han HS, Kang G, Kim JS, et al. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016 Mar 11;48:e218.

(86) Ansdell P, Thomas K, Hicks KM, et al. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol. 2020 Dec;105(12):2007–2021.

(87) Oydanich M, Babici D, Zhang J, et al. Mechanisms of sex differences in exercise capacity. Am J Physiol Regul Integr Comp Physiol. 2019 Jun 1;316(6):R832–838.

(88) Sims ST, Ware L, Capodilupo ER. Patterns of endogenous and exogenous ovarian hormone modulation on recovery metrics across the menstrual cycle. BMJ Open Sport Exerc Med. 2021;7(3):e001047.

(89) Fehring RJ, Schneider M, Raviele K. Variability in the phases of the menstrual cycle. J Obstet Gynecol Neonatal Nurs. 2006 May-Jun;35(3):376–384.

(90) Bruinvels G, Hackney AC, Pedlar CR. Menstrual cycle: the importance of both the phases and the transitions between phases on training and performance. Sports Med. 2022 Apr 29;52:1457–1460.

(91) Bruinvels G, Goldsmith E, Blagrove R, et al. Prevalence and frequency of menstrual cycle symptoms are associated with availability to train and compete: a study of 6812 exercising women recruited using the Strava exercise app. Br J Sports Med. 2021 Apr;55(8):438–443.

(92) Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37(7):557–574.

(93) LM VL, Blanchard H, Blanchard H. Contraceptive choices and menstrual patterns in high level female athletes. Fertil Sterility. 2017;108(3):e122.

(94) Regidor PA. Clinical relevance in present day hormonal contraception. Horm Mol Biol Clin Investig. 2018 Oct 26;37(1).

(95) Regidor PA. The clinical relevance of progestogens in hormonal contraception: present status and future developments. Oncotarget. 2018 Oct 2;9(77):34628–34638.

(96) Benagiano G, Gabelnick H, Brosens I. Long-acting hormonal contraception. Womens Health (Lond). 2015 Nov;11(6):749–757.

(97) Stachenfeld NS, Silva C, Keefe DL, et al. Effects of oral contraceptives on body fluid regulation. J Appl Physiol. 1985 1999 Sep;87(3):1016–1025.

(98) Suh SH, Casazza GA, Horning MA, et al. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 1985 2003 Jan;94(1):285–294.

(99) Hemrika DJ, Slaats EH, Kennedy JC, et al. Pulsatile luteinizing hormone patterns in long term oral contraceptive users. J Clin Endocrinol Metab. 1993 Aug;77(2):420–426.

(100) Stanczyk FZ. All progestins are not created equal. Steroids. 2003 Nov;68(10–13):879–890.

(101) Goldzieher JW, Stanczyk FZ. Oral contraceptives and individual variability of circulating levels of ethinyl estradiol and progestins. Contraception. 2008 Jul;78(1):4–9.

(102) Adeyemi-Fowode OA, Bercaw-Pratt JL. Intrauterine devices: effective contraception with noncontraceptive benefits for adolescents. J Pediatr Adolesc Gynecol. 2019 Sep;32(5S):S2–6.

(103) Lopez LM, Ramesh S, Chen M, et al. Progestin-only contraceptives: effects on weight. Cochrane Database Syst Rev. 2016 Jul;(8).

(104) Rivera R, Yacobson I, Grimes D. The mechanism of action of hormonal contraceptives and intrauterine contraceptive devices. Am J Obstet Gynecol. 1999 Nov;181(5 Pt 1):1263–1269.

(105) Smith-McCune K, Thomas R, Averbach S, et al. Differential effects of the hormonal and copper intrauterine device on the endometrial transcriptome. Sci Rep. 2020 Apr 23;10(1):6888.

(106) Frye CA. An overview of oral contraceptives: mechanism of action and clinical use. Neurology. 2006 Mar 28;66(6 Suppl 3):S29–36.

(107) Baerwald A, Vanden Brink H, Lee C, et al. Endometrial development during the transition to menopause: preliminary associations with follicular dynamics. Climacteric. 2020 Jun;23(3):288–297.

(108) Vanden Brink H, Chizen D, Hale G, et al. Age-related changes in major ovarian follicular wave dynamics during the human menstrual cycle. Menopause. 2013 Dec;20(12):1243–1254.

(109) Baerwald A, Vanden Brink H, Hunter C, et al. Age-related changes in luteal dynamics: preliminary associations with antral follicular dynamics and hormone production during the human menstrual cycle. Menopause. 2018 Apr;25(4):399–407.

(110) Wang Q, Ferreira DLS, Nelson SM, et al. Metabolic characterization of menopause: cross-sectional and longitudinal evidence. BMC Med. 2018 Feb 6;16(1):17.

(111) Polotsky HN, Polotsky AJ. Metabolic implications of menopause. Semin Reprod Med. 2010 Sep;28(5):426–434.

(112) Greendale GA, Sternfeld B, Huang M, et al. Changes in body composition and weight during the menopause transition. JCI Insight. 2019 Mar 7;4(5).

(113) Logue DM, Madigan SM, Melin A, et al. Low energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance. Nutrients. 2020 Mar 20;12(3).

(114) Mountjoy M, Sundgot-Borgen J, Burke L, et al. International olympic committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int J Sport Nutr Exerc Metab. 2018 Jul 1;28(4):316–331.

(115) Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004 Aug;19(8):1231–1240.

(116) Areta JL, Taylor HL, Koehler K. Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur J Appl Physiol. 2021 Jan;121(1):1–21.

(117) Eckel LA. The ovarian hormone estradiol plays a crucial role in the control of food intake in females. Physiol Behav. 2011 Sep 26;104(4):517–524.

(118) Butera PC. Estradiol and the control of food intake. Physiol Behav. 2010 Feb 9;99(2):175–180.

(119) Mela V, Vargas A, Meza C, et al. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. J Steroid Biochem Mol Biol. 2016 Jun;160:15–26.

(120) Bisdee JT, James WP, Shaw MA. Changes in energy expenditure during the menstrual cycle. Br J Nutr. 1989 Mar;61(2):187–199.

(121) Barr SI, Janelle KC, Prior JC. Energy intakes are higher during the luteal phase of ovulatory menstrual cycles. Am J Clin Nutr. 1995 Jan;61(1):39–43.

(122) Schofield KL, Thorpe H, Sims ST. Feminist sociology confluences with sport science: insights, contradictions, and silences in interviewing elite women athletes about low energy availability. J Sport Soc Issues. 2022;0(0):01937235211012171.

(123) Heather AK, Thorpe H, Ogilvie M, et al. Biological and socio-cultural factors have the potential to influence the health and performance of elite female athletes: a cross sectional survey of 219 elite female athletes in aotearoa new Zealand. Front Sports Act Living. 2021 ;3:601420.

(124) Slater J, Brown R, McLay-Cooke R, et al. Low energy availability in exercising women: historical perspectives and future directions. Sports Med. 2017 Feb;47(2):207–220.

(125) Wasserfurth P, Palmowski J, Hahn A, et al. Reasons for and consequences of low energy availability in female and male athletes: social environment, adaptations, and prevention. Sports Med Open. 2020 Sep 10;6(1):44.

(126) Stellingwerff T, Heikura IA, Meeusen R, et al. Overtraining syndrome (OTS) and relative energy deficiency in sport (RED-S): shared pathways, symptoms and complexities. Sports Med. 2021 Nov;51(11):2251–2280.

(127) Allaway HC, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Investig. 2016 Feb;25(2):91–119.

(128) Elliott-Sale KJ, Tenforde AS, Parziale AL, et al. Endocrine effects of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2018 Jul 1;28(4):335–349.

(129) Melin AK, Heikura IA, Tenforde A, et al. Energy availability in athletics: health, performance, and physique. Int J Sport Nutr Exerc Metab. 2019 Mar 1;29(2):152–164.

(130) Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the female athlete triad–relative energy deficiency in sport (RED-S). Br J Sports Med. 2014 Apr;48(7):491–497.

(131) Hudson AD, Kauffman AS. Metabolic actions of kisspeptin signaling: effects on body weight, energy expenditure, and feeding. Pharmacol Ther. 2021 Sep;14:107974.

(132) Hrabovszky E, Ciofi P, Vida B, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010 Jun;31(11):1984–1998.

(133) Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol. 2020 Aug;16(8):407–420.

(134) Toufexis D, Rivarola MA, Lara H, et al. Stress and the reproductive axis. J Neuroendocrinol. 2014 Sep;26(9):573–586.

(135) Castellano JM, Tena-Sempere M. Metabolic regulation of kisspeptin. Adv Exp Med Biol. 2013;784:363–383.

(136) Donnelly JE, Hill JO, Jacobsen DJ, et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: the midwest exercise trial. Arch Intern Med. 2003 Jun 9;163(11):1343–1350.

(137) Stensel D. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab. 2010;57(2):36–42.

(138) Hagobian TA, Sharoff CG, Stephens BR, et al. Effects of exercise on energy-regulating hormones and appetite in men and women. Am J Physiol Regul Integr Comp Physiol. 2009 Feb;296(2):R233–42.

(139) Hagobian TA, Yamashiro M, Hinkel-Lipsker J, et al. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women. Appl Physiol Nutr Metab. 2013 Jan;38(1):66–72.

(140) De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998 Dec;83(12):4220–4232.

(141) Reed JL, De Souza MJ, Mallinson RJ, et al. Energy availability discriminates clinical menstrual status in exercising women. J Int Soc Sports Nutr. 2015 ;12:11.

(142) Stellingwerff T. Case study: body composition periodization in an olympic-level female middle-distance runner over a 9-year career. Int J Sport Nutr Exerc Metab. 2018 Jul 1;28(4):428–433.

(143) McFadden BA, Walker AJ, Bozzini BN, et al. Comparison of internal and external training loads in male and female collegiate soccer players during practices vs. Games. J Strength Cond Res. 2020 Apr;34(4):969–974.

(144) Bozzini BN, McFadden BA, Scruggs SK, et al. Evaluation of performance characteristics and internal and external training loads in female collegiate beach volleyball players. J Strength Cond Res. 2021 Jun 1;35(6):1559–1567.

(145) Smith AB, Gay JL, Arent SM, et al. Examination of the prevalence of female athlete triad components among competitive cheerleaders. Int J Environ Res Public Health. 2022 Jan 26;19(3):1375.

(146) Walker AJ, McFadden BA, Sanders DJ, et al. Biomarker rESPONSE TO A COMPETITIVE SEASON IN DIVISION I FEMALE SOCCER PLAYers. J Strength Cond Res. 2019 Oct;33(10):2622–2628.

(147) McFadden BA, Walker AJ, Arent MA, et al. Biomarkers correlate with body composition and performance changes throughout the season in women’s division I collegiate soccer players. Front Sports Act Living. 2020 ;2:74.

(148) Walker AJ, McFadden BA, Sanders DJ, et al. Early season hormonal and biochemical changes in division i field hockey players: is fitness protective? J Strength Cond Res. 2020 Apr;34(4):975–981.

(149) Bozzini BN, McFadden BA, Elliott-Sale KJ, et al. Evaluating the effects of oral contraceptive use on biomarkers and body composition during a competitive season in collegiate female soccer players. J Appl Physiol. 1985 2021Jun 1;130(6):1971–1982.

(150) Hodson L, Harnden K, Banerjee R, et al. Lower resting and total energy expenditure in postmenopausal compared with premenopausal women matched for abdominal obesity. J Nutr Sci. 2014 ;3:e3.

(151) Holtzman B, Ackerman KE. Recommendations and nutritional considerations for female athletes: health and performance. Sports Med. 2021 Sep;51(Suppl 1):43–57.

(152) Deutz RC, Benardot D, Martin DE, et al. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med Sci Sports Exercise. 2000 Mar;32(3):659–668.

(153) Kerksick CM, Arent S, Schoenfeld BJ, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017 ;14:33.

(154) Henderson GC, Fattor JA, Horning MA, et al. Glucoregulation is more precise in women than in men during postexercise recovery. Am J Clin Nutr. 2008 Jun;87(6):1686–1694.

(155) Henderson GC, Fattor JA, Horning MA, et al. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J Physiol. 2007 Nov 1;584(Pt 3):963–981.

(156) Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006 Jul 1;574(Pt 1):125–138.

(157) Kalkhoff RK. Metabolic effects of progesterone. Am J Obstet Gynecol. 1982 Mar 15;142(6 Pt 2):735–738.

(158) Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013 Jun;34(3):309–338.

(159) Vislocky LM, Gaine PC, Pikosky MA, et al. Gender impacts the post-exercise substrate and endocrine response in trained runners. J Int Soc Sports Nutr. 2008 Feb 26;5:7.

(160) Ibrahimi A, Bonen A, Blinn WD, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999 Sep 17;274(38):26761–26766.

(161) Kiens B, Roepstorff C, Glatz JF, et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol. 1985 2004 Oct;97(4):1209–1218.

(162) Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014 May;44(1):S87–96.

(163) Tarnopolsky LJ, MacDougall JD, Atkinson SA, et al. Gender differences in substrate for endurance exercise. J Appl Physiol. 1985 1990 Jan;68(1):302–308.

(164) Lamont LS, Lemon PW, Bruot BC. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exercise. 1987 Apr;19(2):106–110.

(165) Landau RL, Poulos JT. The metabolic influence of progestins. Adv Metab Disord. 1971;5:119–147.

(166) Willett HN, Koltun KJ, Hackney AC. Influence of menstrual cycle estradiol-β-17 fluctuations on energy substrate utilization-oxidation during aerobic, endurance exercise. Int J Environ Res Public Health. 2021 Jul 5;18(13):7209.

(167) Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010 Mar 1;40(3):207–227.

(168) Chappell S, Hackney AC. Associations between menstrual cycle phase, physical activity level and dietary macronutrient intake. Biol Sport. 1997;14(4):251–258.

(169) Hackney AC, McCracken-Compton MA, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int J Sport Nutr Exerc Metab. 1994;4(3):299–308.

(170) Devries MC, Hamadeh MJ, Phillips SM, et al. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1120–1128.

(171) Zderic TW, Coggan AR, Ruby BC. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol. 2001;90(2):447–453.

(172) Horton TJ, Pagliassotti MJ, Hobbs K, et al. Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol. 1985 1998Nov;85(5):1823–1832.

(173) Horton TJ, Grunwald GK, Lavely J, et al. Glucose kinetics differ between women and men, during and after exercise. J Appl Physiol. 1985 2006 Jun;100(6):1883–1894.

(174) Hedrington MS, Davis SN. Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front Endocrinol. 2015;6:61.

(175) Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol Endocrinol Metab. 2001 Jun;280(6):E898–907.

(176) Bagley L, Slevin M, Bradburn S, et al. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise. BMJ Open Sport Exerc Med. 2016;2(1):e000056.

(177) Landen S, Voisin S, Craig JM, et al. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics. 2019 Jun;14(6):523–535.

(178) Suh S-H, Casazza G, Horning M, et al. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003 ;94:285–294.

(179) Silva-Bermudez LS, Toloza FJK, Perez-Matos MC, et al. Effects of oral contraceptives on metabolic parameters in adult premenopausal women: a meta-analysis. Endocr Connect. 2020 Oct;9(10):978–998.

(180) Larsen B, Cox A, Colbey C, et al. Inflammation and oral contraceptive use in female athletes before the rio olympic games. Front Physiol. 2020 ;11:497.

(181) Cauci S, Buligan C, Marangone M, et al. Oxidative stress in female athletes using combined oral contraceptives. Sports Med Open. 2016 Dec;2(1):40.

(182) McLay RT, Thomson CD, Williams SM, et al. Carbohydrate loading and female endurance athletes: effect of menstrual-cycle phase. Int J Sport Nutr Exerc Metab. 2007 Apr;17(2):189–205.

(183) Hackney AC. Effects of the menstrual cycle on resting muscle glycogen content. Horm Metab Res. 1990 Dec;22(12):647.

(184) Paul D, Mulroy S, Horner J, et al. Carbohydrate-loading during the follicular phase of the menstrual cycle: effects on muscle glycogen and exercise performance. Int J Sport Nutr Exerc Metab. 2001 ;11:430–441.

(185) Tarnopolsky M, Zawada C, Richmond L, et al. Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol. 2001 ;91:225–230.

(186) Walker J, Heigenhauser G, Hultman E, et al. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol. 2000 ;88:2151–2158.

(187) Sherman W, Costill D, Fink W, et al. The effect of exercise-diet manipulation on muscle glycogen and its subsequent utilisation during performance. Int J Sports Med. 1981 ;2:114–118.

(188) Rauch L, Rodger I, Wilson G, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr. 1995 ;5:25–36.

(189) Hawley J, Palmer G, Noakes T. Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol. 1997;75:407–412.

(190) Burke L, Hawley J, Schabort E, et al. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000 ;88:1284–1290.

(191) Rauch H, St Clair Gibson A, Lambert E, et al. A signaling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005 ;39:34–38.

(192) Tarnopolsky M, Atkinson S, Phillips S, et al. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol. 1995;75:2134–2141.

(193) Wismann J, Willoughby D. Gender differences in carbohydrate metabolism and carbohydrate loading. J Int Soc Sports Nutr. 2006;31(1):28–34.

(194) Sedlock D. The latest on carbohydrate loading: a practical approach. Curr Sports Med Rep. 2008;7(4):209–213.

(195) Burke LM, Loucks AB, Broad N. Energy and carbohydrate for training and recovery. J Sports Sci. 2006 Jul;24(7):675–685.

(196) Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29(1):S17–27.

(197) Burke LM, Hawley JA, Jeukendrup A, et al. Toward a common understanding of diet-exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. Int J Sport Nutr Exerc Metab. 2018 Sep 1;28(5):451–463.

(198) Moore DR, Sygo J, Morton JP. Fuelling the female athlete: carbohydrate and protein recommendations. Eur J Sport Sci. 2022 May;22(5):684–696.

(199) Boschmann M, Rosenbaum M, Leibel RL, et al. Metabolic and hemodynamic responses to exercise in subcutaneous adipose tissue and skeletal muscle. Int J Sports Med. 2002 Nov;23(8):537–543.

(200) Riddell MC, Partington SL, Stupka N, et al. Substrate utilization during exercise performed with and without glucose ingestion in female and male endurance trained athletes. Int J Sport Nutr Exerc Metab. 2003 Dec;13(4):407–421.

(201) Tremblay J, Peronnet F, Massicotte D, et al. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exercise. 2010 Jul;42(7):1314–1323.

(202) Sadik R, Abrahamsson H, Stotzer PO. Gender differences in gut transit shown with a newly developed radiological procedure. Scand J Gastroenterol. 2003 Jan;38(1):36–42.

(203) Mori H, Suzuki H, Matsuzaki J, et al. Gender difference of gastric emptying in healthy volunteers and patients with functional dyspepsia. Digestion. 2017;95(1):72–78.

(204) Gonzalez Z, Loganathan P, Sarosiek I, et al. Gender-related differences in gastroparesis. Am J Med Sci. 2020 Nov;360(5):474–483.

(205) Bernstein MT, Graff LA, Avery L, et al. Gastrointestinal symptoms before and during menses in healthy women. BMC Womens Health. 2014 Jan 22;14:14.

(206) Lee CL, Cheng CF, Astorino TA, et al. Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. J Int Soc Sports Nutr. 2014 ;11:17.

(207) Beaven CM, Maulder P, Pooley A, et al. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab. 2013 Jun;38(6):633–637.

(208) Chryssanthopoulos C, Ziaras C, Oosthuyse T, et al. Carbohydrate mouth rinse does not affect performance during a 60-min running race in women. J Sports Sci. 2018 Apr;36(7):824–833.

(209) Karayigit R, Forbes SC, Naderi A, et al. Different doses of carbohydrate mouth rinse have no effect on exercise performance in resistance trained women. Int J Environ Res Public Health. 2021 Mar 26;18(7):3463.

(210) Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol. 2021 Jan;121(1):23–66.

(211) Rowlands DS, Swift M, Ros M, et al. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012 Jun;37(3):425–436.

(212) Wallis G, Yeo S, Blannin A, et al. Dose-response effects of ingested carbohydrate on exercise metabolism in women. Med Sci Sports Exercise. 2007;39(1):131–138.

(213) Hashimoto H, Ishijima T, Hayashida H, et al. Menstrual cycle phase and carbohydrate ingestion alter immune response following endurance exercise and high intensity time trial performance test under hot conditions. J Int Soc Sports Nutr. 2014 ;11:39.

(214) Bailey S, Zacher C, Mittleman K. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol. 2000;88:690–697.

(215) Phelain JF, Reinke E, Harris MA, et al. Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. J Am Coll Nutr. 1997 Apr;16(2):140–146.

(216) Nicklas B, Hackney A, Sharp R. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med. 1989;10:264–269.

(217) Tarnopolsky MA, Bosman M, Macdonald JR, et al. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1985 1997 Dec;83(6):1877–1883.

(218) Roy B, Luttmer K, Bosman M, et al. The influence of post-exercise macronutrient intake on energy balance and protein metabolism in active females participating in endurance training. Int J Sport Nutr Exerc Metab. 2002 ;12:172–188.

(219) Yu W, Zhou G, Fan B, et al. Temporal sequence of blood lipids and insulin resistance in perimenopausal women: the study of women’s health across the nation. BMJ Open Diabetes Res Care. 2022 Mar;10(2):e002653.

(220) Ivy JL, Katz AL, Cutler CL, et al. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1985 1988 Apr;64(4):1480–1485.

(221) Burke LM, van Loon LJC, Hawley JA, et al. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 1985 2017 May 1;122(5):1055–1067.

(222) Zaromskyte G, Prokopidis K, Ioannidis T, et al. Evaluating the leucine trigger hypothesis to explain the post-prandial regulation of muscle protein synthesis in young and older adults: a systematic review. Front Nutr. 2021 ;8:685165.

(223) Burd NA, Tang JE, Moore DR, et al. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 1985 2009 May;106(5):1692–1701.

(224) Phillips SM, Atkinson SA, Tarnopolsky MA, et al. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol. 1985 1993 Nov;75(5):2134–2141.

(225) Eisenhofer G, Peitzsch M, Kaden D, et al. Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clin Chim Acta. 2017 Jul;470:115–124.

(226) Hansen M, Langberg H, Holm L, et al. Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women. Scand J Med Sci Sports. 2011 Feb;21(1):62–72.

(227) Dalgaard LB, Dalgas U, Andersen JL, et al. Influence of oral contraceptive use on adaptations to resistance training. Front Physiol. 2019 ;10:824.

(228) Mercer D, Convit L, Condo D, et al. Protein requirements of pre-menopausal female athletes: systematic literature review. Nutrients. 2020 Nov 16;12(11).

(229) Thomas DT, Erdman KA, Burke LM. American college of sports medicine joint position statement nutrition and athletic performance. Med Sci Sports Exerc. 2016 Mar;48(3):543–568.

(230) Jager R, Kerksick CM, Campbell BI, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017 ;14:20.

(231) Houltham SD, Rowlands DS. A snapshot of nitrogen balance in endurance-trained women. Appl Physiol Nutr Metab. 2014 Feb;39(2):219–225.

(232) Carbone JW, McClung JP, Pasiakos SM. Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Adv Nutr. 2019 Jan 1;10(1):70–79.

(233) Kuikman MA, Mountjoy M, Burr JF. Examining the relationship between exercise dependence, disordered eating, and low energy availability. Nutrients. 2021 Jul 28;13(8).

(234) Slater J, McLay-Cooke R, Brown R, et al. Female recreational exercisers at risk for low energy availability. Int J Sport Nutr Exerc Metab. 2016 Oct;26(5):421–427.

(235) Black K, Slater J, Brown RC, et al. Low energy availability, plasma lipids, and hormonal profiles of recreational athletes. J Strength Cond Res. 2018 Oct;32(10):2816–2824.

(236) Sharps FRJ, Wilson LJ, Graham CA, et al. Prevalence of disordered eating, eating disorders and risk of low energy availability in professional, competitive and recreational female athletes based in the United Kingdom. Eur J Sport Sci. 2021 Jul;16:1–7.

(237) Bosse JD, Dixon BM. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories. J Int Soc Sports Nutr. 2012 Sep 8;9(1):42.

(238) Antonio J, Ellerbroek A, Evans C, et al. High protein consumption in trained women: bad to the bone? J Int Soc Sports Nutr. 2018 ;15:6.

(239) Antonio J, Ellerbroek A, Silver T, et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women–a follow-up investigation. J Int Soc Sports Nutr. 2015 ;12:39.

(240) Stannard SR, Buckley AJ, Edge JA, et al. Adaptations to skeletal muscle with endurance exercise training in the acutely fed versus overnight-fasted state. J Sci Med Sport. 2010 Jul;13(4):465–469.

(241) Hackney KJ, Bruenger AJ, Lemmer JT. Timing protein intake increases energy expenditure 24 h after resistance training. Med Sci Sports Exercise. 2010 May;42(5):998–1003.

(242) Gould LM, Gordon AN, Cabre HE, et al. Metabolic effects of menopause: a cross-sectional characterization of body composition and exercise metabolism. Menopause. 2022 Feb 28;29(4):377–389.

(243) Agostini D, Zeppa Donati S, Lucertini F, et al. Muscle and bone health in postmenopausal women: role of protein and vitamin d supplementation combined with exercise training. Nutrients. 2018 Aug 16;10(8).

(244) Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016 May;41(5):565–572.

(245) Smith GI, Reeds DN, Hall AM, et al. Sexually dimorphic effect of aging on skeletal muscle protein synthesis. Biol Sex Differ. 2012 May 23;3(1):11.

(246) Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy: let’s talk about sex. Biol Sex Differ. 2019 Aug 28;10(1):43.

(247) Bukhari SS, Phillips BE, Wilkinson DJ, et al. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am J Physiol Endocrinol Metab. 2015 Jun 15;308(12):E1056–65.

(248) Ispoglou T, Deighton K, King RF, et al. Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial. Nutr J. 2017 Nov 28;16(1):75.

(249) Du C, Tucker RM, Yang CL. How are you sleeping? Why nutrition professionals should ask their patients about sleep habits. J Am Nutr Assoc. 2022 Feb;23:1–11.

(250) Sargent C, Lastella M, Halson SL, et al. How much sleep does an elite athlete need? Int J Sports Physiol Perform. 2021 Dec 1;16(12):1746–1757.

(251) Romans SE, Kreindler D, Einstein G, et al. Sleep quality and the menstrual cycle. Sleep Med. 2015 Apr;16(4):489–495.

(252) Brown SG, Morrison LA, Calibuso MJ, et al. The menstrual cycle and sexual behavior: relationship to eating, exercise, sleep, and health patterns. Women Health. 2008;48(4):429–444.

(253) Baker FC, Driver HS. Self-reported sleep across the menstrual cycle in young, healthy women. J Psychosom Res. 2004 Feb;56(2):239–243.

(254) Manber R, Bootzin RR. Sleep and the menstrual cycle. Health Psychol. 1997 May;16(3):209–214.

(255) Hachul H, Andersen ML, Bittencourt L, et al. A population-based survey on the influence of the menstrual cycle and the use of hormonal contraceptives on sleep patterns in Sao Paulo, Brazil. Int J Gynaecol Obstet. 2013 Feb;120(2):137–140.

(256) Stanicic A, Jokic-Begic N. Psychophysical characteristics of the premenstrual period. Coll Antropol. 2010 Dec;34(4):1421–1425.

(257) Nedelec M, Halson S, Abaidia AE, et al. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 2015 Oct;45(10):1387–1400.

(258) Abbott W, Brett A, Cockburn E, et al. Presleep casein protein ingestion: acceleration of functional recovery in professional soccer players. Int J Sports Physiol Perform. 2019 Mar 1;14(3):385–391.

(259) Apweiler E, Wallace D, Stansfield S, et al. Pre-bed casein protein supplementation does not enhance acute functional recovery in physically active males and females when exercise is performed in the morning. Sports (Basel). 2018 Dec 28;7(1).

(260) West DWD, Abou Sawan S, Mazzulla M, et al. Whey protein supplementation enhances whole body protein metabolism and performance recovery after resistance exercise: a double-blind crossover study. Nutrients. 2017 Jul 11;9(7).

(261) Ormsbee MJ, Gorman KA, Miller EA, et al. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Appl Physiol Nutr Metab. 2016 Jul;41(7):719–727.

(262) Leyh SM, Willingham BD, Baur DA, et al. Pre-sleep protein in casein supplement or whole-food form has no impact on resting energy expenditure or hunger in women. Br J Nutr. 2018 Nov;120(9):988–994.

(263) Al-Disi D, Al-Daghri N, Khanam L, et al. Subjective sleep duration and quality influence diet composition and circulating adipocytokines and ghrelin levels in teen-age girls. Endocr J. 2010;57(10):915–923.

(264) Shibli F, Skeans J, Yamasaki T, et al. Nocturnal gastroesophageal reflux disease (GERD) and sleep: an important relationship that is commonly overlooked. J Clin Gastroenterol. 2020 Sep;54(8):663–674.

(265) Charkoudian N, Stachenfeld NS. Reproductive hormone influences on thermoregulation in women. Comprehensive Physiology: John Wiley & Sons, Inc.; 2011.

(266) Ishunina TA, Swaab DF. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus; size changes in relation to age and sex. J Clin Endocrinol Metab. 1999;84(12):4637–4644.

(267) Sar M, Stumpf W. Simultaneous localization of [3 H] estradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neurosci Lett. 1980;17(1):179–184.

(268) Stachenfeld NS, Keefe DL. Estrogen effects on osmotic regulation of AVP and fluid balance. Am J Physiol Endocrinol Metab. 2002 Oct;283(4):E711–21.

(269) Verney EB. The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci. 1947;135(878):25–106.

(270) Ritz P, Vol S, Berrut G, et al. Influence of gender and body composition on hydration and body water spaces. Clin Nutr. 2008 Oct;27(5):740–746.

(271) Driscoll RL, McCarthy DG, Palmer MS, et al. Mild dehydration impaired intermittent sprint performance and thermoregulation in females. Appl Physiol Nutr Metab. 2020 Sep;45(9):1045–1048.

(272) Logan-Sprenger HM, Heigenhauser GJ, Killian KJ, et al. Effects of dehydration during cycling on skeletal muscle metabolism in females. Med Sci Sports Exercise. 2012 Oct;44(10):1949–1957.

(273) Logan-Sprenger HM, Heigenhauser GJ, Jones GL, et al. Increase in skeletal-muscle glycogenolysis and perceived exertion with progressive dehydration during cycling in hydrated men. Int J Sport Nutr Exerc Metab. 2013 Jun;23(3):220–229.

(274) Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011 Dec;22(12):2166–2181.

(275) Hew-Butler T, Rosner MH, Fowkes-Godek S, et al. Statement of the third international exercise-associated hyponatremia consensus development conference, Carlsbad, California, 2015. Clin J Sport Med. 2015;25(4):303–320.

(276) Almond CS, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the boston marathon. N Engl J Med. 2005;352(15):1550–1556.

(277) Vokes TJ, Weiss NM, Schreiber J, et al. Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am J Physiol. 1988 Apr;254(4 Pt 2):R641–7.

(278) Stachenfeld NS, Dipietro L, Palter SF, et al. Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am J Physiol Regul Integr Comp Physiol. 1998;274(1):R187–195.

(279) Rosner MH, Bennett B, Hew-Butler T, et al. Exercise-associated hyponatremia. In: Simon Eeditor. Hyponatremia: evaluation and Treatment. New York, NY: Springer New York; 2013. pp. 175–192.

(280) Stachenfeld NS. Hormonal changes during menopause and the impact on fluid regulation. Reprod Sci. 2014 May;21(5):555–561.

(281) Stachenfeld NS, Splenser AE, Calzone WL, et al. Selected contribution: sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol. 2001;91(4):1893–1901.

(282) Garthe I, Maughan RJ. Athletes and supplements: prevalence and perspectives. Int J Sport Nutr Exerc Metab. 2018 Mar 1;28(2):126–138.

(283) Herbold NH, Visconti BK, Frates S, et al. Traditional and nontraditional supplement use by collegiate female varsity athletes. Int J Sport Nutr Exerc Metab. 2004 Oct;14(5):586–593.

(284) Smith ES, McKay AKA, Kuikman M, et al. Auditing the representation of female versus male athletes in sports science and sports medicine research: evidence-based performance supplements. Nutrients. 2022 Feb 23;14(5):953.

(285) Glenn JM, Smith K, Moyen NE, et al. Effects of acute beta-alanine supplementation on anaerobic performance in trained female cyclists. J Nutr Sci Vitaminol (Tokyo). 2015;61(2):161–166.

(286) Smith AE, Stout JR, Kendall KL, et al. Exercise-induced oxidative stress: the effects of beta-alanine supplementation in women. Amino Acids. 2012 Jul;43(1):77–90.

(287) Varanoske AN, Hoffman JR, Church DD, et al. Beta-Alanine supplementation elevates intramuscular carnosine content and attenuates fatigue in men and women similarly but does not change muscle l-histidine content. Nutr Res. 2017 Dec;48:16–25.

(288) Varanoske AN, Hoffman JR, Church DD, et al. Influence of skeletal muscle carnosine content on fatigue during repeated resistance exercise in recreationally active women. Nutrients. 2017 Sep 7;9(9).

(289) Harris RC, Tallon MJ, Dunnett M, et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006 May;30(3):279–289.

(290) Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sports Nutr. 2015 ;12:30.

(291) Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021 Jan 2;18(1):1.

(292) Lane JD, Steege JF, Rupp SL, et al. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol. 1992;43(5):543–546.

(293) Goldstein E, Jacobs PL, Whitehurst M, et al. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010 May 14;7:18.

(294) Filip-Stachnik A, Wilk M, Krzysztofik M, et al. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J Int Soc Sports Nutr. 2021 Mar 30;18(1):25.

(295) Filip-Stachnik A, Krzysztofik M, Del Coso J, et al. Acute effects of two caffeine doses on bar velocity during the bench press exercise among women habituated to caffeine: a randomized, crossover, double-blind study involving control and placebo conditions. Eur J Nutr. 2022 Mar;61(2):947–955.

(296) Mielgo-Ayuso J, Marques-Jimenez D, Refoyo I, et al. Effect of caffeine supplementation on sports performance based on differences between sexes: a systematic review. Nutrients. 2019 Sep 30;11(10).

(297) Adan A, Prat G, Fabbri M, et al. Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Oct 1;32(7):1698–1703.

(298) Guest N, Corey P, Vescovi J, et al. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exercise. 2018 Aug;50(8):1570–1578.

(299) Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001 Jan;81(1):209–237.

(300) Gao C, Gupta S, Adli T, et al. The effects of dietary nitrate supplementation on endurance exercise performance and cardiorespiratory measures in healthy adults: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2021 Jul 9;18(1):55.

(301) Jones AM. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review. Appl Physiol Nutr Metab. 2014 Sep;39(9):1019–1028.

(302) Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121–31.

(303) Wylie LJ, Ortiz de Zevallos J, Isidore T, et al. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: acute vs. chronic supplementation. Nitric Oxide. 2016 Jul 1;57:30–39.

(304) Wickham KA, McCarthy DG, Pereira JM, et al. No effect of beetroot juice supplementation on exercise economy and performance in recreationally active females despite increased torque production. Physiol Rep. 2019 Jan;7(2):e13982.

(305) Proctor DN, Neely KA, Mookerjee S, et al. Inorganic nitrate supplementation and blood flow restricted exercise tolerance in post-menopausal women. Nitric Oxide. 2022 May 1;122-123:26–34.

(306) Smith-Ryan AE, Cabre HE, Eckerson JM, et al. Creatine supplementation in women’s health: a lifespan perspective. Nutrients. 2021 Mar 8;13(3).

(307) Brosnan JT, Brosnan ME. Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr. 2007;27:241–261.

(308) Forsberg AM, Nilsson E, Werneman J, et al. Muscle composition in relation to age and sex. Clin Sci (Lond). 1991 Aug;81(2):249–256.

(309) Mihic S, MacDonald JR, McKenzie S, et al. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exercise. 2000 Feb;32(2):291–296.

(310) Ellery SJ, Walker DW, Dickinson H. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids. 2016 Aug;48(8):1807–1817.

(311) Bundey S, Crawley JM, Edwards JH, et al. Serum creatine kinase levels in pubertal, mature, pregnant, and postmenopausal women. J Med Genet. 1979 Apr;16(2):117–121.

(312) Chilibeck PD, Kaviani M, Candow DG, et al. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017 ;8:213–226.

(313) Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition. 2004 Jul-Aug;20(7–8):609–614.

(314) Williams T, Walz E, Lane AR, et al. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biol Sport. 2015 Sep;32(3):193–198.

(315) Buford TW, Kreider RB, Stout JR, et al. International society of sports nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007 Aug 30;4:6.

(316) DellaValle DM, Haas JD. Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: a study of female collegiate rowers. Int J Sport Nutr Exerc Metab. 2011 Dec;21(6):501–506.

(317) Murphy WG, Tong E, Murphy C. Why do women have similar erythropoietin levels to men but lower hemoglobin levels? Blood. 2010 Oct 14;116(15):2861–2862.

(318) Peeling P, Dawson B, Goodman C, et al. Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exercise. 2009 May;41(5):1138–1145.

(319) Peeling P, Dawson B, Goodman C, et al. Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol. 2009 May;106(1):51–59.

(320) Laine F, Angeli A, Ropert M, et al. Variations of hepcidin and iron-status parameters during the menstrual cycle in healthy women. Br J Haematol. 2016 Dec;175(5):980–982.

(321) Angeli A, Laine F, Lavenu A, et al. Joint model of iron and hepcidin during the menstrual cycle in healthy women. Aaps J. 2016 Mar;18(2):490–504.

(322) Li X, Rhee DK, Malhotra R, et al. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest. 2016 Jan;126(1):389–401.

(323) Pedlar CR, Brugnara C, Bruinvels G, et al. Iron balance and iron supplementation for the female athlete: a practical approach. Eur J Sport Sci. 2018 Mar;18(2):295–305.

(324) Sim M, Dawson B, Landers G, et al. Interleukin-6 and hepcidin levels during hormone-deplete and hormone-replete phases of an oral contraceptive cycle: a pilot study. Ann Nutr Metab. 2017;70(2):100–105.

(325) Alfaro-Magallanes VM, Benito PJ, Rael B, et al. Menopause delays the typical recovery of pre-exercise hepcidin levels after high-intensity interval running exercise in endurance-trained women. Nutrients. 2020 Dec 17;12(12).

_____________________

NOTAS

Artigo adaptado e traduzido para o português pelos editores de OLYMPIKA MAGAZINE para republicação, conforme normas de submissão do periódico. Versão original em: https://www.tandfonline.com/doi/full/10.1080/15502783.2023.2204066 ) LICENÇA ORIGINAL E DA VERSÃO: © 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/)

Imagem meramente ilustrativa. Fonte: https://www.freepik.com/free-photo/young-woman-with-healthy-sporty-figure-eating-red-fresh-apple-with-skipping-rope-neck_10232657.htm

Publicado

2024-04-19

Como Citar

1.
Sims ST, Kerksick CM, Smith-Ryan AE, de Jonge XAKJ, Hirsch KR, Arent SM, et al. Pronunciamento Oficial da Sociedade Internacional de Nutrição Esportiva (ISSN): Padrões nutricionais da atleta feminina. OlyMag [Internet]. 19º de abril de 2024 [citado 21º de novembro de 2024];2. Disponível em: https://olympika.org/index.php/Olympika-Magazine/article/view/13

Edição

Seção

Comunicados Oficiais
OLYMPIKA ADS